LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS
 THIRD SEMESTER - APRIL 2023

16/17/18UMT3MCO2 - VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS

Date: 04-05-2023 \square Max. : 100 Marks
Time: 01:00 PM - 04:00 PM
Dept. No.

Part A

Answer ALL questions:
$(10 \times 2=20)$

1. Find $\nabla \varnothing$ at $(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})$ if $\emptyset=\boldsymbol{x}^{\mathbf{3}}+\boldsymbol{y}^{\mathbf{3}}+\mathbf{3 x y z}$.
2. Prove that $\operatorname{div}(\vec{r})=3$, where \vec{r} is the position vector.
3. Find a such that $(3 x-2 y+z) \vec{\imath}+(4 x+a y-z) \vec{\jmath}+(x-y+2 z) \vec{k}$ is solenoidal.
4. Define a conservative vector field.
5. If $\vec{F}=y \vec{\imath}-x \vec{\jmath}$, evaluate $\int_{C} \vec{F} . d \vec{r}$ from $(0,0)$ to $(1,1)$ along the curve $y=x$.
6. State Green's theorem.
7. Solve: $\frac{d y}{d x}=\frac{y+2}{x-1}$.
8. Find the general solution of $y=(x-a) p-p^{2}$.
9. Solve: $\left(D^{2}+5 D+6\right) y=0$.
10. Find the particular integral $\left(D^{2}+3 D+2\right) y=e^{x}$.

Part-B

Answer any FIVE questions:
$(5 \times 8=40)$
11. Prove that $\nabla \times(\nabla \times \vec{F})=\nabla(\nabla \cdot \vec{F})-\nabla^{2} \vec{F}$.
12. Compute the divergence and curl of the vector $\vec{F}=x y^{2} \vec{\imath}+2 x^{2} y z \vec{\jmath}-3 y z^{2} \vec{k}$ at $(1,-1,1)$.
13. Using Green's theorem, show that $\int_{C}\left(3 x^{2}-8 y^{2}\right) d x+(4 y-6 x y) d y=20$, Where C is the boundary of the rectangular area enclosed by the lines $x=0, x=1, y=0, y=2$ in the xoy plane.
14. Evaluate $\iiint_{V} \nabla \cdot \vec{F} d V$ where $\vec{F}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k}$ and V is the volume enclosed by the cube $0 \leq x, y, z \leq 1$.
15. Solve: $p\left(1+q^{2}\right)=q(z-1)$.
16. Find the general solution of $(y+z) p+(z+x) q=x+y$.
17. Solve: $\left(D^{2}+5 D+6\right) y=e^{x}$.
18. Evaluate: $\left(D^{2}+16\right) y=\cos 4 x$.

Part C

Answer any TWO questions:

$$
(2 \times 20=40)
$$

19. (a) Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \vec{\imath}+(2 y \sin x-4) \vec{\jmath}+\left(3 x z^{2}\right) \vec{k}$ is irrotational and find it's scalar potential.
(b) Find the value of the integral $\int_{C} \vec{A} \cdot d \vec{r}$ where $\vec{A}=y z \vec{\imath}+z x \vec{\jmath}-x y \vec{k}$ is the following cases (i)
C is the curve whose parametric equation are $x=t, y=t^{2}, z=t^{3}$. Drawn from $(0,0,0)$ to
$(2,4,8)$. (ii) C is the curve obtained joining $(0,0,0)$ to $(2,0,0)$ then $(2,0,0)$ to $(2,4,0)$ and then $(2,4,0)$ to $(2,4,8)$.
20. (a) Solve: $(x+1) \frac{d y}{d x}+1=2 e^{-y}$.
(b) Solve: $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$.
21. Verify Gauss divergence theorem for $\bar{F}=(2 x-z) \bar{\imath}+x^{2} y \bar{\jmath}-x z^{2} \bar{k}$ over the cube bounded by the planes $x=0, x=1, y=0, y=1, z=0, z=1$.
22. Solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$, using variation of parameters.
