LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034	
B.Sc. DEGREE EXAMINATION – MATHEMATICS	
THIRD SEMESTER – APRIL 2023	
16/17/18UMT3MC02 - VECTOR ANALYSIS AND ORDINARY DIFF. EQUATIONS	
Date: 04-05-2023 Dept. No. Time: 01:00 PM - 04:00 PM	Max. : 100 Marks
Part A	
Answer ALL questions: 1. Find $\nabla \emptyset$ at (x, y, z) if $\emptyset = x^3 + y^3 + 3xyz$.	(10 x 2 = 20)
2. Prove that $div(\vec{r}) = 3$, where \vec{r} is the position vector.	
3. Find a such that $(3x - 2y + z)\vec{i} + (4x + ay - z)\vec{j} + (x - y + 2z)\vec{k}$ is solenoidal.	
4. Define a conservative vector field.	
5. If $\vec{F} = y \vec{\iota} - x\vec{j}$, evaluate $\int_C \vec{F} \cdot d\vec{r}$ from (0, 0) to (1, 1) along the curve $y = x$.	
6. State Green's theorem.	
7. Solve: $\frac{dy}{dx} = \frac{y+2}{x-1}$.	
8. Find the general solution of $y = (x - a)p - p^2$.	
9. Solve: $(D^2 + 5D + 6) y = 0$.	
10. Find the particular integral $(D^2 + 3D + 2) y = e^x$.	
Part-B	(7 0 40)
Answer any FIVE questions: 11. Prove that $\nabla \times (\nabla \times \vec{F}) = \nabla (\nabla \cdot \vec{F}) - \nabla^2 \vec{F}$.	$(5 \times 8 = 40)$
12. Compute the divergence and curl of the vector $\vec{F} = xy^2 \vec{\iota} + 2x^2yz\vec{j} - 3yz^2\vec{k}$ at $(1, -1, 1)$.	
13. Using Green's theorem, show that $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = 20$, Where C is the	
boundary of the rectangular area enclosed by the lines $x = 0, x = 1, y = 0, y = 2$ in the <i>xoy</i> plane.	
14. Evaluate $\iiint_V \nabla \cdot \vec{F} dV$ where $\vec{F} = x^2 \vec{i} + y^2 \vec{j} + z^2 \vec{k}$ and <i>V</i> is the volume enclosed by the cube	
$0 \leq x, y, z \leq 1.$	
15. Solve: $p(1 + q^2) = q(z - 1)$.	
16. Find the general solution of $(y + z)p + (z + x)q = x + y$.	
17. Solve: $(D^2 + 5D + 6)y = e^x$.	
18. Evaluate: $(D^2 + 16) y = cos4x$.	
Part C	

Answer any TWO questions:

 $(2 \times 20 = 40)$

19. (a) Prove that $\vec{F} = (y^2 \cos x + z^3) \vec{\iota} + (2y \sin x - 4) \vec{j} + (3x z^2) \vec{k}$ is irrotational and find it's scalar potential.

(b) Find the value of the integral $\int_C \vec{A} \cdot d\vec{r}$ where $\vec{A} = yz \vec{i} + zx \vec{j} - xy \vec{k}$ is the following cases (i) *C* is the curve whose parametric equation are x = t, $y = t^2$, $z = t^3$. Drawn from (0, 0, 0) to (2, 4, 8). (ii) *C* is the curve obtained joining (0, 0, 0) to (2, 0, 0) then (2, 0, 0) to (2, 4, 0) and then (2, 4, 0) to (2, 4, 8).

- 20. (a) Solve: $(x + 1) \frac{dy}{dx} + 1 = 2 e^{-y}$. (b) Solve: $\frac{dy}{dx} - y \tan x = \frac{\sin x \cos^2 x}{y^2}$.
- 21. Verify Gauss divergence theorem for $\overline{F} = (2x z)\overline{i} + x^2 y\overline{j} xz^2\overline{k}$ over the cube bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1.
- 22. Solve $\frac{d^2y}{dx^2} + y = secx$, using variation of parameters.

###########